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Cavity Optomechanics
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Opt. Express 20, 18268 (2012)
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Cantilever-based Si;N, Devices

= Cantilever-based optomechanical devices
= Separation between optical and mechanical resonator
= Small mass
= Moderate fundamental mechanical frequencies (MHz)
= High sensitivity

Nano Lett., 2017, 17 (9), pp 5587-5594 Nat. Commun. 1994 (2013)
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Motivation

To develop a high-precision, low-drift displacement measurement platform for
various precision MEMS sensor applications

» Enhanced transduction at small scales

= Frequency stability and limit of detection:
(5f/f0) =(1/2Q)10-(OR20)

» High mechanical f,Q,, product
= High bandwidth
= Force sensitivity scales as 1/(f,>-°Q,,%°)

= Overcome tradeoff betwee f_ and Q,,

» SizN, mechanical resonator with design-determined mechanical frequency
= SisN, intrinsic stress varies with different fabrication processes

» Mechanical resonator with design-enabled temperature compensation
= Remove influence from temperature

= Not rely on matching different materials/in-situ active temperature control.
» Solution:

= Tuning fork optomechanical transducer with near-field readout and special nonlinear
mechanical clamp design.
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Near-field Optomechanical Readout
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Device Characterization Setup
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High f_ Q. Product — Tuning fork

» | oss for mechanical resonators operating in vacuum
» Thermoelastic dissipation (TED) Intrinsic
= Material loss Fmsie
* VVolume loss
» Surface loss
» Clamping loss

1/QM :1/chamiping +1/QTED +1/Qmaterial +1/Qother
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Electrode Phys. Rep. 534, 89-146 (2014)

Losses

All these losses can be reduced by localized motion
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Localized Motion Reduces Mechanical Loss
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Stress Engineering

= Doubly clamped Si;N, tuning forks with a high tensile stress
= LPCVD SizN, has high intrinsic tensile stress uniformly distributed
» The stress retained with doubly clamped tuning forks but redistributed

* Final beam stress/frequency can be engineered without reduction of Q,,

Si;N, pre-stress of 1.078 GPa

- Beam stress of 1.388 GPa

after undercut Mode shape

Before undercut
After undercut EEEER =

Beam stress of 3.080 GPa in high stress device Stress level
Low — High
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Measured Mechanical Spectra
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Stress Engineering — More Controllable?

» Nonlinear clamp design enable the frequency only determined by geometry
* |n regular tuning fork, the final beam stress/frequency determined by both intrinsic

stress and the geometry

| Before device releasing

I Nonlinear spring
curved

:After device releasing

|
| nonlinear spring

Straightened

Stiffness increase significantly

CT Tension bar shrink

I . .

11

NIST & Center for Nanoscale Science & Technology @WPI



Stress Engineering — More Controllable?

Simulation of beam stress and resonant frequency
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Temperature compensation

= With similar working principles, temperature sensitivity of vibration
frequencies can also be engineered.

» Temperature induced frequency fluctuation is mainly due to thermal expansion
mismatch between device layer and substrate

= Coefficient of Thermal Expansion (CTE) of Si: 2.6 x 10° (K1)
= CTE of LPCVD Si3N,: 1.6 x 105 (K-1)

Beams are stretched/compressed

Differential
thermal expansion
Induced stress

Beams length remain fixed

Allan deviation measurement

= Relative bias stability is = 10-° above 1 s averaging

= Thermal dynamic limited

» Displacement uncertainty = 0.2 pm

displacement »
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Summary

* Doubly clamped Si;N, tuning fork cavity optomechanical sensors

* Near-field optomechanical readout

» High f_,Q,, product resulting from tuning fork structure and increased beam
stress

« Geometry determined stress/frequency tuning

« Temperature compensation with tunable temperature sensitivity

« Further development

 |Inertia sensing (€) CW laser g
 Fully integration with photonic integrated circuit

Nano Letters 17(9): 5587-5594

Nature Photonics 6(11): 768-772

15 NIST &5 Center for Nanoscale Science & Technology



Thanks for your attention.
Questions?
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